

Overview

- CO₂ Capture Project (CCP) Partnerships & Organization
- Project Screening & Progress Review
- CCP Program In Brief
- Storage, Monitoring & Verification (SMV) Program
 - SMV Team Process & Program Focus
 - Partnerships
 - Governments
 - Joint Industry Project Participants
 - Technology Providers
 - Focus Areas
 - Deployment and Communications Plans
- Summary

Government Partnerships

Eight Participants: 54%

Industry

International technology development effort.

Distinct regional programs in the US, Norway, and European Union.

Sharing among programs to leverage results and reduce duplication.

➤ Project Funding \$25million

Total Industry & Governments

Industrial & Government Partnerships

European Union

Klimatek NorCap

JIP Organization & Governance Model

CO₂ Capture Project Objectives

- ➤ Achieve major reductions in the cost of CO₂ Capture and Storage:
 - > 50% reduction when applied to a retrofit application.
 - > 75% reduction when applied to a new build application.
- ➤ Demonstrate to external stakeholders that CO₂ storage is safe and effective, measurable, and verifiable.
- Progress technologies to:
 - 'Proof of concept' stage by 2003/4.

Project Overview- We've Come a Long Way!

Storage Technology

SMV Process and Program Focus Areas

•	1Q/2000	Formed SMV Team
•	2-3Q 2000	Reviewed DOE Roadmap, Looked for R&D Gaps for SMV to Focus On (next slide)
•	4Q 2000	Workshop with Technology Providers, DC
•	1Q 2001	Reviewed and Ranked 70 Proposals, and Obtained Board Approval to Proceed with 29 Projects
•	2Q-4Q 2001	Executed Contracts, Work Began, and Held 2 nd Workshop in Potsdam
•	3Q 2002	Reports Begin to Be Posted on Website; Held 3 rd Workshop in Santa Cruz, California

Storage, Monitoring & Verification Focus Areas

- Understanding Geologic Storage (Integrity)
 - Natural CO₂ Accumulations & Natural Gas Storage Analogs
 - Reservoir, Caprock, Faults & Well Competence
- Maximizing Storage Efficiency (Optimization)
 - Storage Efficiency / Volume of Rock
 - Transportation, Materials Selection, CO₂ Impurities
- Verification & Monitoring (Monitoring)
 - Does CO₂ migrate? Under what conditions?
 - Can we verify the amounts injected?
 - What tools are appropriate for leak detection?
- Health, Safety & Environmental Risk (HSE RA)
 - HES Risk Assessment Methodology
 - HES Risk Mitigation
 - HES Risk Remediation
- Last 2 Bullets Are Major Focus Areas for the SMV Team

Integrity

The 7 Integrity Projects Endeavor to:

- Characterize Natural CO₂ Reservoirs (Competent & Leaky)
- Leverage Experience of the Natural Gas Storage Industry
- Assess the Competency of Reservoir, Cap Rock & Well Materials Exposed to CO₂
- Detect Induced Microseismicity from CO₂ Injection

Contracted Studies

- Borm (GFZ) CO₂ & Rock Physical Properties
- Evans (USU) Leaky Reservoirs
- Johnson (LLNL) Reactive Transport Modeling
- Lindeberg (SINTEF) Well Sealing Capacity
- Perry (GTI) Natural Gas Storage
- Rigg (APRCRC) Micro-seismicity
- Stevens (ARI) Competent Reservoirs

Optimization

The 7 optimization projects aim to:

- Address Transportation & Materials Selection
- Evaluate CO₂ Enhanced Oil, Gas-Condensate and Coalbed Methane Recovery
- Document Acid Gas Disposal Projects
- Examine "CO₂ Purity Tradeoffs"
 Contracted Studies:
- Bachu (AEUB) Acid Gas Disposal
- Frailey (TTU) Gas-Condensates
- Grigg (MNT) EOR
- Liang (INEL) Coal
- Heggum (Reinertsen) Transportation
- Seiersten (IFE) Materials Selection
- TBD Purity Tradeoff

Monitoring

7 Projects Approach Monitoring of CO₂ Storage:

- Remote Detection (Satellite & Aerial)
- Near Surface Detection (Chemical)
- Subsurface Detection (Geophysical)

Contracted Studies:

- Arts (TNO) Geophysical (Seismic)
- Davis (PSU) IR Detection Systems
- Hoversten (LBNL) Geophysical (Non-Seismic)
- Nimz (LLNL) Noble Gases
- Pickles (LLNL) Geobotanical Hyperspectral
- Zebkar (Stanford) Satellite Radar Interferometry

Risk Analysis – Health, Safety & Environment (RA HSE)

Multiple Approaches to Quantifying Risk Associated with CO₂ Storage:

- Early Warning & Remediation
- Environmental Impact (Terrestrial, Marine & Subsurface)
- FEP (Features, Events & Processes)
- Probablistic & Deterministic Models
- Case Studies
 - a. Offshore, Onshore
 - b. Gas, Oil & Coal Reservoirs
- Contracted Studies
- Benson (LBNL) Environmental Impact (Surface)
- Liang (INEL) RA Methodology (ECBM)
- Oldenburg (LBNL) RA Methodology (Near Surface)
- Wildenborg (TNO) RA Methodology (Subsurface)
- TBD Environmental Impact (Marine & Subsurface)

Compartment	Mechanical processes	Hydraulic processes	Physico- chemical processes	Marine hydraulic processes	Atmospheric physical processes
Storage reservoir					
Seal	DIANA	SIMED DIANA	TAFFETAS/ MARTHE		
Overburden					
Shallow aquifer/soil			STOMP		
Hydrosphere (sea)				DELFT3D	
Atmosphere					PLUME+/ LOTOS/JAM

SMV Communications Way Forward

- Have engaged professional communications consultants
- We don't want to have 29 studies "sitting on the shelf"
- Rather, we want an integrated series of reports that attempt to tell a compelling story that:
 - CO₂ storage can be safe and effective
 - CO₂ can be monitored both short and long-term
 - CO₂ storage is verifiable

Summary - Progress Through Partnerships

- Formed High-Performance SMV Team
 - 8 industrial partnerships and strong partnering
 - Has grown from 7 to 15 people from 8 companies
- CCP / Government Partnerships (DOE, EU, Klimatek)
 - International technology development effort
 - Sharing among programs to leverage results and reduce duplication
- CCP / Technology Provider Relationships
 - Annual sharing and workshops
 - Monthly progress reports and occasional meetings
- For More Detailed Technology Descriptions, please:
 - See Scott Imbus's Poster Session
 - Group 1, Case Studies, May 6, Noon end of the day
 - Visit the appropriate CCP's PI's poster(s)
 - Visit the CCP's website: Co2captureproject.org

Communications, cont.

- We plan to engage a professional association and journal
 - Extensive peer-review world-wide
- Current vision is for ~4 key audiences e.g.
 - Scientific Journal, highly technical (200-500 pages)
 - Government Report and Road Show (10-100 pages)
 - Public reader-friendly version with glossy pictures (3-10 pages)
 - TV documentaries for BBC, Nova, or Discovery Channel
- Consultant's work proposals in hand
- Deployed NLT 1Q 2004

<u>Acknowledgements</u>

- Government & Industry Sponsors
- Technology Providers